Contents
1 Notations
2 Constraint Deriviations

3 Predefined Constraints

3.1 PivotJoint
3.2 WeldJoint
3.3 AngleJoint.
3.4 DistanceJoint
3.5 LineJoint
3.6 MotorJoint
3.7 PulleyJoint

4 UserConstraint
4.1 UserConstraint :: PivotJoint
4.2 UserConstraint :: AngleJoint

5 SymbolicConstraint

Nape Constraints

Luca Deltodesco

December 4, 2012

11
13
14

15

1 Notations

Types
SCALAR values will be denoted as simple variables s
VECTOR values will be denoted with an arrow decoration like v/
MATRIX values will be denoted with bold, capitals like M

Operator Notation
DoT PRODUCTS - : R® x R® — R with @ -7 = @77 = uyv, + uyvy in the case of n =2
NorM ||| : R® — R with [|d|| = Vi -ud
CROSS PRODUCTS X : R? x R? — R with @ x ¥ = u,v, —u,v, (Perhaps more commonly denoted the perp-dot product)
[l : R? = R? with [d],, = (Yy > so that @ x ¥ = [u],, - U.
X

Overloading the x operator; let s x @ = s[u], and @ x s = —s X @ as hoped.

X

OUTER PRODUCTS:

| L UpUp Ug .
! = 1R U= e) and in general for non-vectors too.
UyUp Uyly
_, T UyUy — —Uyv :
[d, [V, =uov= vy Y”%) and in general for non-vectors too.
—Ugly Ugly

Useful results

-¥ =74 (symmetric)

(st + t¥) - W = (& - W) + t(0 - W) (linear)

U x U= —Uxuand so [d], -U=—1u-[V],
(st +t0) x W = s(@ x W) + (¥ x W) (linear)
[0, -] = ¥4

Hﬁ x} x —v

T®7=(F®u)!" (similarly for ®)

(st + t7) @ W = s(d ® W) + t(T ® &) (linear) (similarly for ®)

and in general for non-vectors too with regards to outer products.
Speciﬁcally[%}@{g]:{g][CT DT]: ggg ggg
TRIPLE PRODUCTS:

U x (U x W) =—(Ux @) [d], < a vector

(U x V) x W = (4 x V) [W], +a vector

4 x (s %
(s x @) x

—

¥) = s(u - ¥) +a scalar
U = —s(u - ¥) +a scalar
Useful derivatives

4(@-7) = (4 -7)

4 (4 x v) = (d—ﬁ x ¥) + (@ x 4¥) (also true when permitting one of @, to be scalar)
d

&Nl = iy (@ 4)

Reserved variables
PosIiTiION 7 VELOCITY v MASS m

RoTATION 6 ANGULAR VELOCITY w MOMENT OF INERTIA 4

Related derivatives

d = -
?./L'—U
EQZW
da

& = w x 1 for 4 defined local to the coordinate system of the body (an anchor)

2 Constraint Deriviations

A (positional) constraint is defined by a linear function of all the bodies’ positions and rotations collectively grouped

into block-vector like:
T U1

#=| % | and velocity block-vector ¥/ = £ = | “1

The positional constraint is then the function C' : R3® — R™ for an m-dimensional constraint satisfying C(¥) = 0
exactly when the constraint is satisfied, any additional variables used in the positional constraint should be constant
whenever the positions are constant.

The related velocity constraint is then determined by V(v) = £C(&) + J for a velocity-bias 3 (Normally 0) so that
V(%) = 0 exactly when the constraint is satisfied, the bias should be constant.

From the velocity constraint we derive the constraint JACOBIAN as the block-row-vector formed by the partial derivatives
of V with respect to the velocity components.
J= [%V %V e } this is in-fact a function of the positions # and remains fixed whenever the position vector

is unchanged. The jacobian is such that V() = Jv 4+ g

Finally we determine the EFFECTIVE MASS MATRIX defined as:
K =JM~1J7T for the MASS MATRIX M; defined like:
m1E2 0
M = gl for 2 x 2 identity matrix E
0)

The effective mass matrix computation is simplified as M is diagonal, giving:
_ 1 (av v % oV
K—E<Tm>®(fm)+ﬁ<m>®<m)
The effective mass matrix is always both symmetric, and positive-definite (Positive definiteness is a very nice property
for matrices, akin to positive scalars so that @Ku” > 0 for all @ # 0)

The constraint jacobian J determines the impulses we apply to the bodies; give the constraint-space impulse X eR™
we get the world-space impulse € R?" via JT\.

For inequality constraints C'(Z) < 0 and more generaly permitting C(Z) - €; to be either 0 or < 0 for standard basis
vectors €; (Intuitively, some coordinates of constraint space should be fixed at 0 whilst others are only limited-above at
0). We can model these constraints by selectively zeroing appropriate coordinates of C(Z), V(¢),J, K (permitting a more
general interpretation of matrix inverse when it comes to inverting K internally)

For inequality constraints ¢ < C(Z) < b (and more generally on coordinate basis) introduce a weight vector & with
w; € {—1,0,1} so that we can (on a coordinate basis) transform the positional constraint into a one-sided inequality
(which we know how to handle) C;(Z) — b < 0 and (—1) - (C;(Z) — a) < 0 or simply disable the coordinate. The purpose
of using the weight being that the constraint space does not become mirrored when the inequality side is swapped.

The more general interpretation of a matrix inverse, is to note that when we disable a constraint row, we end up with a

kin 0 ki3
matrix K which has a zero-cross intersecting in the diagonal like: K = 0o 0 0 and its “inverse” is given by the
k31 0 ka3
1 0 0
matrix K~! having the same zero-crosses such that KK=* = | 0 0 0 |; the identity matrix with the same zero-cross
0 0 1

applied. This always exists and is unique no matter how many zero-crosses through the diagonal we add and is equivalent
to removing the row/columns of all zero-crosses, performing the inverse, then re-adding those rows and columns.

3 Predefined Constraints

3.1 PivotJoint

The PivotJoint is the simplest (non-trivial) constraint in Nape.
This joint defines two local anchor positions (hereafter labeled @; and ds) whose world-coordinates are locked together.

We can define the 2-dimensional position constraint as:
C(Z) = (¥2 + Ry,dz2) — (#1 + Ry, d1) = 0 for rotation matrix Ry
Clearly when position vector is unchanged, Ryd = 7 is constant.

POSITIONAL CONSTRAINT: C(&) = (Zy +72) — (1 +71) =

The 2-dimensional velocity constraint is:

V(¥) = £C(Z) and we define no velocity bias (since we want velocity at anchor points to be equal).

VELOCITY CONSTRAINT: V(¥) = (T +wa X) — (¥ +wy x 7) =0

For the jacobian, it will be helpful to write the velocity constraint like:
V(’U) = —Egﬁl — [Fﬂx w1 + Ezﬁg + [FQ]X w2
from which we can identify the Jacobian easily.

JacoBIAN: J = —E; —[A], E; [R], |= (

The effective mass matrix is then given by:
K= -(-E2) @ (~E2) + & (= ["1]) @ (= [™],) -

mi

1oy 1 The TRy Ty T2ty
Err-Mass: K = (i+i) Ex+t(fom+L(@mon)= ™ m o ' b i2 2 2,
mi ma2 “ 2 # L_{_L_F%_‘_%

ma mo 11 12

The impulse applied to bodies in world space is then given by the coordinates of

—E, —E>\
1T 1T Y
JTX _ - [Tl]x Az _ - [T1]3< A
E2T)\y EQ)\
[FQ}X [FQ]Z A
_X 17/1 = _’1 — leA
- / 1 (= N
N —7 X A w1:w1*a(1><)\)
IMPULSES: JTX = o = . ay

3.2 WeldJoint

The WeldJoint is an extension of the PivotJoint to lock the rotations of the bodies to a fixed phase, this is; like the
PivotJoint fairly trivial as we have no inequalities, this constraint is 3-dimensional.
Like the PivotJoint we have anchors @ and world-space anchors 7. We also have an angular phase ¢

POSITIONAL CONSTRAINT: C(7) = { (T2 + 72) = (#1 +71) } =0

Oy — 6y — ¢

Again a velocity bias of 0

VELOCITY CONSTRAINT: V(7)) = { (T Fws > 72) = (U1 Fwr X 71)] =0

W — W1

For the jacobian, we can use a trick of taking the jacobian of each row in the velocity
constraint and composing the results:

- - -1 0 T1 1 0 —T2

_E, — E y y

JACOBIAN: J = { i [ri]x i [21]X } = 0 —1 —rp 0 1 1y
B 0 0 -1 00 1

- 1 0 0
By B 1B O (g 1 o
or [P lor | Tlor o)~
0 0 O
2 _ _
[F]X ® [F]X _ rOr [T‘]X _ _::yr :gc27’1/ TT.U
X —Ty Ty 1
7“2 7“2 T12T T T T I8
R R e e S T
Err-Mass: K = L 1 r o Thy e Tas
mTm TR TS

-E, O
JTX - [771]2 -1 im
E;, 0 I\
1T z
[T'Q}X 1
_Xxy
- - _’1 X Xx -)\z -
ImpULsES: JTA = (- U) where X, = A
Azy Ay
)

3.3 AngleJoint

The AngleJoint is a double inequality constraint, which means we now introduce the weight vector w. The AngleJoint is
1 dimensional, so in this case we just have a scalar weight w.

The AngleJoint constrains the weighted sum of body rotations by a ratio, to be in a given range. I introduce variable
p for the ratio, and zg,x7 with zg < z; for the joint limits.

POSITIONAL CONSTRAINT: z¢ < (¢(Z) = pfs — 1) < x1
TRANSFORM:
C (&) = ¢(Z) — z9 = 0 WHEN zo = x1 (standard constraint with w = 1)

C (%) = xg — ¢(Z) <0 WHEN ¢(¥) < x¢ (inequality constraint with w = —1)
C (&) = 0 WHEN z¢ < ¢(%) < x1 (disabled inequality constraint with w = 0)
C(Z) = ¢(Z) — x1 < 0 WHEN ¢(Z) > z; (inequality constraint with w = 1)

Using the weight w we can leave the rest of the mathematics untouched by complication.

VELOCITY CONSTRAINT: V(¥) = w (pwz —wiy) < 0. Can see this is 0 when w = 0 as required; in the case that we have a
standard constraint we replace < with =

JACOBIAN: J = [0" —w 07 wp]:(0 0 —w 0 0 wp) Can see this is 0 when w = 0 as required.

Err-Mass: K = w? (.1 + ﬁ). Can see this is 0 when w = 0 as required.

3 2

ImpULSES: JTX = wA | = |. Which is 0 when w = 0 as required, when we have a true inequality constraint we will

always have A < 0.

In the case of the AngleJoint, as it’s 1 dimensional. When w = 0 we simply skip any subsequent calculations.

3.4 DistanceJoint

The DistanceJoint constrains the distance between two anchors aj, ds of the bodies to be in a given positive range of
values. This like the AngleJoint is a double inequality constraint, and is also a 1-dimensional constraint.

POSITIONAL CONSTRAINT: zg < (¢(Z) = ||(Z2 + 72) — (F1 + 71)||) < 21 WITH 29 > 0
TRANSFORM into C(Z) as previously introducing weight w

We then have the velocity constraint given by

V(%) = wie(®) = ramrmmrmy (@ +72) = (@1 4+ 7)) - (2 +wo X 7o) — (T + w1 x 7))

For the purposes of simplifying the mathematics (and code) we introduce the vector

7i = w-unit ((Fo + 72) — (&1 + 71)). It is clear that should the distance between anchors be exactly 0 we have a problem;
the constraint degenerates; to solve this we cache the previously used 77 and recommend that the lower limit be strictly
greater than 0.

VELOCITY CONSTRAINT: V(¥) =7 - ((v2 + we X 7a) — (Uh + w1 X 71))

To extract the jacobian, we can rewrite V(7) like:
V(’U) = —1- 171 —wlﬁ- [Fl]x -|—’ﬁ: ’172 +LU27_i' [FQ]X
and noting that 7 - [F], =7 X 7

Simplifying the mathematics and code again, let ¢; = 7} x 77 and similarly for ¢y

JacoBIAN: J = | =il —c; Al e |

S

Noting that i’ @ 7 =@li =7 -7 = ||

| = w? by definition.

3"—‘
S
3
M
S
oy
S
M

Err-mass: K = w? (

ImpuLses: JTX =X ¢

3.5 LineJoint

The LineJoint constrains the anchor of the second body ds to be restricted to a possibly infinite line-segment defined by
the anchor of the first body @; and a local direction to which we will assign the world-space vector 77, normalised.

The LineJoint is a two-dimensional constraint which is in one dimension, a standard constraint, and in the other
dimension, a two-way inequality.
To simplify the mathematics and code, define d = (Z3 + ™) — (1 + 71)

1

TRANSFORM into C(Z) with a weight vector @ = (w

The velocity constraint is then:

d=o 712w d .7
V(ﬁ):wl E”XdJr”thd

d = __ — d7_ (= - — -
i T where £ = w; x 7 and §;d = (U +wa X 72) — (U1 + w1 X 1)
Zn-d+mn-2d

w

<y

V(

) (wlxﬁ)xjtﬁxvg—ﬁxvl+ﬁx(wszQ)—ﬁx(wlxﬁ)]
(w1 Xﬁ)-d+ﬁ~1}2—ﬁ-vl +ﬁ'(WQXF2)—ﬁ-(W1 ><7?1)

We introduce the following to simplifify the maths and code.

dy =i (d—7)

do =1 - T

C1 =7 X (J*T_ﬁ)

CQZT_I:XT_"Q

} T Ax (G- do — wond
VELOCITY CONSTRAINT: V(7) =@ | " (32 31) wady mwndy
i+ (o — 1) — wace + wicy

3.6 MotorJoint
The MotorJoint is a velocity-only constraint (It has no positional constraint) which locks the weighted difference of body

angular velocities to be at a given rate.

Using p for ratio as previous and recycling ¢ as the rate:
VELOCITY CONSTRAINT: V(¥) = pws — w1 — ¢. Noticing that ¢ is free and forms the velocity bias.

—

JacoBian: J=[07 —1 07 p]

Err-Mass: K = % 4+ 2

2

0
v -2
IMPULSES: J* A\ = o

PA

3.7 PulleyJoint

The PulleyJoint is the only inbuilt Nape constraint to have more than 2 bodies involved. It exists in a few varients, unlike
other nape joints it permits certain of the bodies to be assigned to the same body for 3-body pulleys, and even 2-body
pulleys.

Any arrangement will suffice as long as body1l != body2 and body3 != body4

Using p for the ratio once more and limits z¢, 21 we now have 4 anchors which I will label as usual.

POSITIONAL CONSTRAINT: zg < (¢(Z) = [[(Z2 + 72) — (&1 + 71)|| + p [[(Za + 7a) — (&5 +73)|| < a1
TRANSFORMED in the usual way, noting that whatever varient of pulley is used this remains unchanged.

Simplifying in a similar way to the DistanceJoint; let
12 = W - unit ((:Z"Q + 7)) — (fl + ’Fl)) , T34 = wp - unit (<f4 + 774) — (55'3 + F3))

VELOCITY CONSTRAINT: V(¥) = fi1a - ((¥h +wa X ro) — (U1 + w1 X 71)) + #isq - (s + wg X 74) — (U5 + w3 X 13))
noting that whatever varient of pulley is used this remains unchanged.

Letting c1 = 771 X T_i127 Coy = FQ X ’r_7:12, C3 = 7?3 X ﬁ34, Cqp = 774 X T_i34
then we have Jacobian by rearranging V like:
V(ﬁ) = fi1o - (172 — ’(71) =+ (OJQCQ — w1cl) + N3y - (U4 — ’U3) + (W4C4 — W303)

JACOBIAN:

J=[—itly —a iy o —W3; —cs Ay cy |

When it comes to application of impulses we do not need to do anything further as
application is linear.

The 4 body case is trivial to compute the effective mass.

In the 3 body cases and 2 body cases we get some varient(s) of
(’FL?; ﬁg;l) X (ﬁ,{2 — T_L?;4) = (512 — ﬁ34) . (ﬁ12 — ﬁ34) 2 (1 + P) — 2’512 . ﬁ34
(2—03) (2—03)2034—03—26203

(7112 + n34) & (ﬁ{g + T_ig;4) = (’r_ilz + ﬁ34) . (ﬁlg + ﬁ34) = w? (1 + p2) + 2710 - T34
(ca+c4) @ (ca+cq) = 3+ 2 + 2¢a04

Err-MAss:)) , , i ,
— a2 (L 4 1 L L LT R - S
K=w <m1+ +mt +i1+i2+i3+i4)

" — _ 12734 C2C3
Ko K-2 (may/3 + 12/3)

K1:3:K+2(M+ c1cq

mi/3 11/4

...etc

IMPULSES:
=T

TY _ ~T T T T
J)\ — (_n12 —C1 n12 C2 TL34 —C3 TL34 Cq4)
again noting that whatever varient is used this remains unchanged.

10

4 UserConstraint

The UserConstraint API provides a way to define a customised Nape constraint at a reasonably low-level. Performance
is not going to be good as writing one by hand entirely, but is FAR simpler and quicker and unless you have hundreds of
them will be perfectly performant.

UserConstraints can automatically be made into soft constraints, have force limits set, breakable just like normal Nape
constraints without any user code.

A UserConstraint looks like:

class MyConstraint extends UserConstraint {
public function new() {
super (/«number of dimensionsx/, /+xis velocity onlyx/=false);

public override function position(err: TArray<Float >):Void {

// populate ’err’ with values of C(x)
err [0] = ..;

err [dimensions —1] = ..;

public override function _ velocity(err:TArray<Float>):Void {
// populate ’err’ with values of V(v)
err [0] = ..;

err [dimensions —1] = ..;

public override function _ eff mass(eff:TArray<Float>):Void {
// populate ’eff’ with values of the effective mass.
// the matrix is compressed abusing mass symmetry and is indexed like
// K= leff[0], eff[1], eff[2],

/) eff[3], eff[4],
// eff[5], eff[6]] for a 3—dimensional constraint.
eff [0] = ..;
eff[#] = ..;
public override function impulse (imp: TArray<Float >, body:Body, out:Vec3):Void {

// populate ’out’ Vec3 with impulse to be applied to ’body’ given
// constraint space impulse (lambda) ’imp ’.

// Note we do not ’apply’ any impulse here, only populate ’out’
out.x = ..}

out.y — ..;

out.z = ..

public override function _ clamp(jAcc:TArray<Float>):Void {
// perform any required clamping of accumulated impulses
// such as for inequality constraints

public override function _ draw(debug:Debug):Void {
// draw a representation of constraint to Debug object.

public override function _ copy():UserConstraint {
// produce and return an exact copy of this UserConstraint

public override function _ broken():Void {

// called when constraint is broken, before it is removed from the
// space or deactivated.

}

public override function _ validate():Void {
// perform any verification steps on the integrity of the constraint
// if there are any computations that can be re—used through both
// the velocity and positional iterations, they can be done here.

}

public override function _ prepare():Void {

// perform any computations that are dependent only on the positions
// of the bodies and remain fixed during velocity iterations.

11

A UserConstraint should have an API that is indistinguishable from the other Nape constraints, and to provide this
you should use the following models for common property types:

Body properties :

We want to ensure that when we set and change Body type properties that all necessary internal actions are
performed, this can be achieved with the following model:

//Haxe
public var bodyl(default, set bodyl):Body;
function set bodyl(bodyl:Body) {
return this.bodyl = _ registerBody(this.bodyl, bodyl);
}

//AS3

var bodyl:Body;

public function get bodyl():Body {
return this.bodyl;

public function set bodyl(bodyl:Body):void {
this.bodyl = _ registerBody(this.bodyl, bodyl);
}

Vec2 properties:

We want to ensure that not only does the Constraint be refreshed when the Vec2 property is changed directly, but
also when its x/y values are changed indirectly. This can be achieved with the following model:

//Haxe

public var anchorl(default, set anchorl):Vec2;

function set anchorl(anchorl:Vec2) {

if (this.anchorl == null) this.anchorl = _ bindVec2();
return this.anchorl.set (anchorl);

}

//AS3

var anchorl:Vec2 = _ bindVec2();

public function get anchorl():Vec2 {
return this.anchorl;

public function set anchorl(anchorl:Vec2):void {
return this.anchorl.set (anchorl);
¥

Other types:

For other parameter types, you need to ensure yourself that mutations of the property invalidate the appropariate
constraint the property belongs to.

For basic types, this is trivial:

//Haxe
public var ratio(default, set ratio):Float;
function set ratio(ratio:Float) {

if (this.ratio != ratio) invalidate();
return this.ratio = ratio;

}

//AS3

var ratio:Number;
public function get ratio():Number {
return this.ratio;

public function set ratio(ratio:Number):void {

if (this.ratio != ratio) _ invalidate();
this.ratio = ratio;

12

4.1 UserConstraint :: PivotJoint

Implementing a PivotJoint with the UserConstraint could then be done like:

class UserPivotJoint extends UserConstraint {
public var bodyl(default, set bodyl):Body;
public var body2(default, set body2):Body;
function set bodyl(bodyl:Body) return this.bodyl = _ registerBody(this.bodyl, bodyl)
function set body2(body2:Body) return this.body2 = registerBody(this.body2, body2)

public var anchorl(default, set anchorl):Vec2;

public var anchor2(default, set anchor2):Vec2;

function set anchorl(anchorl:Vec2) {
if (this.anchorl = null) this.anchorl = _ bindVec2();
return this.anchorl.set(anchorl);

}

function set anchor2(anchor2:Vec2) {
if (this.anchor2 = null) this.anchor2 = bindVec2();
return this.anchor2.set(anchor2);

}

public function new(bodyl:Null<Body>, body2:Null<Body>, anchorl:Vec2, anchor2:Vec2) {
super (2);
this.bodyl = bodyl;
this.body2 = body2;

this.anchorl = anchorl;
this.anchor2 = anchor2;
rell = Vec2.get();
rel2 = Vec2.get();
}
public override function _ copy():UserConstraint {

return new UserPivotJoint (bodyl, body2, anchorl, anchor2);

}

public override function _ wvalidate():Void {
// example:
if (bodyl = null || body2 — null)

throw "Error: UserPivotJoint cannot be simulated with null bodies!";

}

var rell :Vec2;

var rel2:Vec2;

public override function _ prepare():Void {
rell .set (bodyl.localVectorToWorld (anchorl, true));
rel2 .set (body2.localVectorToWorld (anchor2, true));

}
public override function _ position(err:TArray<Float>):Void {
err [0] = (body2.position.x + rel2.x) — (bodyl.position.x + rell .x);
err [1] = (body2.position.y + rel2.y) — (bodyl.position.y + rell.y);
}
public override function _ velocity(err:TArray<Float>):Void {
var vl = bodyl.constraintVelocity;
var v2 = body2.constraintVelocity ;

err [0] = (v2.x — rel2.y % v2.z) — (vl.x — rell.y % vl.z);
err[1] = (v2.y + rel2.x x v2.z) — (vl.y + rell.x x vl.z);

}

public override function _ eff mass(eff:TArray<Float>):Void {
var ml = bodyl.constraintMass; var il = bodyl.constraintlnertia;
var m2 = body2.constraintMass; var i2 = body2.constraintlnertia;
eff [0] = ml + m2 4+ (rell.y % rell.y * il) 4+ (rel2.y % rel2.y % i2);
eff [1] = — (rell.x = rell.y = i1) — (rel2.x % rel2.y % i2);

eff[2] =ml + m2 + (rell.x % rell.x = il) + (rel2.x x rel2.x % i2);

}

public override function _ impulse(imp:TArray<Float >, body:Body, out:Vec3):Void {
var scale = if (body = bodyl) —1.0 else 1.0;
var relv = if (body = bodyl) rell else rel2;
out.x = scale * imp[0];
out.y = scale % imp[1l];
out.z = scale % relv.cross(Vec2.weak{(imp[0], imp[1]));

13

4.2 UserConstraint :: AngleJoint

Implementing an AngleJoint is more fun :)

class UserAngleJoint extends UserConstraint {
bodyl, body2 as above

public var ratio(default, set ratio):Float;

public var jointMin (default , set jointMin):Float;

public var jointMax(default, set jointMax):Float;
+ the model setters.

public function new(bodyl:Null<Body>, body2:Null<Body>, ...) {
super(1);

}

public override functino _ copy():UserConstraint {
return new UserAngleJoint(bodyl, body2, ratio, jointMin, jointMax);

}

var equality :Bool = false;

public override function _ validate():Void {
equality = (jointMin — jointMax);

}

var weight:Float = 1.0;

var error:Float;

public override function _ prepare():Void {
// We compute positional error in here too to avoid repeating
// any calculations.

var c¢x = (ratio % body2.rotation — bodyl.rotation);
if (equality) {

weight = 1;

error = ¢x — jointMax;

else if(cx <= jointMin) {
error = jointMin — cx;
weight = —1;

else if(cx >= jointMax) {

error = cx — jointMax;
weight = 1;
else {
error = 0;
weight 0;
}
}
public override function _ position(err:TArray<Float>):Void {
err [0] = error;
public override function _ velocity(err:TArray<Float>):Void {
var vl = bodyl.constraintVelocity;
var v2 = body2.constraintVelocity;
err [0] = (weight * (ratio * v2.w)) — vl.w;
public override function _ eff mass(eff:TArray<Float>):Void {
var il = bodyl.constraintInertia;
var i2 = body2.constraintlnertia;
eff [0] = i1l + (ratio = ratio x i2);
}
public override function _ impulse(imp:TArray<Float >, body:Body, out:Vec3):Void {
var scale = if (body =— bodyl) —weight else (weight * ratio);
out.x = out.y = 0;
out.z = scale * imp[0];
}

public override function _ clamp(jAcc:TArray<Float>):Void {
if (lequality && jAcc[0] > 0) jAcc[0] = 0;
}

14

5 SymbolicConstraint

The SymbolicConstraint class from the nape-symbolic module provides an ’even higher’ path to creating custom con-
straints. It does this through an expressive DSL (Domain Specific Language) to define positional constraints in (nape-
symbolic does not at present support velocity only constraints).

These SymbolicConstraints have a slightly more obtuse API for setting properties like:

symbolicConstraint .setBody ("bodyl", someBody) ;
symbolicConstraint .setVector ("anchorl", someVec2);
symbolicConstraint.setScalar ("ratio”, someFloat);

Check the SymbolicConstraint API entry for details on the syntax of the DSL, for this manual I will simply give some
example usages:

var symbolicWeldJoint = new SymbolicConstraint ("
body bodyl, body2
vector anchorl, anchor2
scalar phase

constraint

let rl = relative bodyl.rotation anchorl in
let r2 = relative body2.rotation anchor2 in
{ (body2.position + r2) — (bodyl.position 4 rl)
body2.rotation — bodyl.rotation — phase }
")
var symbolicDistanceJoint = new SymbolicConstraint ("
body bodyl, body2
vector anchorl, anchor2
scalar jointMin , jointMax
limit jointMin 0 jointMax # 0 <= jointMin <= jointMax
constraint
let rl = relative bodyl.rotation anchorl in
let r2 = relative body2.rotation anchor2 in
|(body2.position + r2) — (bodyl.position + rl)|
limit constraint jointMin jointMax # jointMin <= constraint <= jointMax
")
var symbolicLineJoint = new SymbolicConstraint ("
body bodyl, body2
vector anchorl, anchor2, direction
scalar jointMin , jointMax
limit jointMin (—inf) jointMax # jointMin <= jointMax
limit |direction| eps inf # direction != 0
constraint
let rl = relative bodyl.rotation anchorl in
let r2 = relative body2.rotation anchor2 in
let dir = unit(relative bodyl.rotation direction) in
let del = (body2.position + r2) — (bodyl.position + rl) in
{ dir dot del
dir cross del }
limit first dimension of constraint between jointMin , jointMax
and limit second dimension to exactly 0
limit constraint { jointMin 0 } { jointMax 0 }
||).

15

